## Section B



| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 ~ ( b ) ( i ) ~}$ | A region / space / volume (around the <br> nucleus / atom) where there is a high <br> probability / chance / likelihood / of <br> finding an electron | Just 'the path an electron <br> takes orbiting around a <br> nucleus' <br> Just 'Position of electrons in <br> an atom' | $\mathbf{1}$ |
|  | ALLOW 'area' / 'sub-shell' as <br> alternative for region <br> OR <br> A region where an electron is likely to <br> be found |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ (b)(ii) |  | For s-orbital do not allow <br> ellipse for first mark <br> pi bond <br> (1) |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 ( c )}$ | $11 /$ eleven |  | $\mathbf{1}$ |
|  | ALLOW $2 p^{6} 3 p^{5}$ | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$ |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1}(\mathbf{d})$ | $18 /$ eighteen | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ | $\mathbf{1}$ |


| Question Number | Acceptable Answers |  |  |  |  |  |  | Reject |  |  |  |  | Mark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * 1 (e) | Enthalpy / energy / heat / heat energy per mole required/ needed <br> OR <br> Enthalpy / energy / heat / heat energy change per mole <br> to remove one / an electron <br> from gaseous atom(s) <br> "Energy required to remove one mole of electrons from one mole of gaseous atoms" scores all three marks <br> NOTE: <br> The equation: $X(g) \rightarrow X^{+}(g)+e^{-}$ <br> scores the last two marks <br> NOTE: <br> An incorrect equation given with a correct definition in words scores 2 out of 3 marks |  |  |  |  |  |  | "Energy given out ..." for first mark |  |  |  |  | 3 |
| Question Number | Acceptable Answers |  |  |  |  |  |  |  |  |  |  |  | Mark |
| 1 (f) | Ionization energy / <br> kJ $\mathrm{mol}^{-1}$ I onization number <br> All five corr <br> Four/three <br> Two/one/no | 496 <br> 1 st <br> $\checkmark$ <br>  <br> coct <br> corr <br> ne | $6^{456} 3$ $2 n d$ <br> 2nd <br> $=2$ <br> rect <br> corr | 691 <br> 3 <br> 3rd <br> mar <br> $=1$ <br> ect $=$ | 954 <br> 4 <br> ks <br> mark <br> 0 | 1335 <br> 2 <br> 5 th <br>  | 1661 1 6th | 2011 <br> 5 <br> 7 th | 2549 <br> 1 <br> 8 th | 2893 <br> 4 <br> 9 9th <br> $\checkmark$ | 14136 <br> 7$\|$ | 15907 <br> 9$\|$1 <br>  | 2 |

Total for Question = 12 marks

| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 2 (a) | F mark:- <br> Makes mention of energy/enthalpy/(heat) energy/heat (change) <br> AND <br> to remove an electron <br> AND <br> one mole/ 1 mol <br> Second mark: <br> Makes mention of gaseous atom(s) <br> ALTERNATI VE ANSWER <br> Energy change per mole for $\begin{equation*} X(g) \rightarrow X^{+}(g)+e^{(-)} \tag{1} \end{equation*}$ <br> Mark the two points independently <br> IGNORE any references to standard conditions | "Energy given out..." for first mark <br> Just ‘gaseous element'/ 'gaseous substance' | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| *2(b) | Any two from three:- <br> (Atomic) radius increases/there are <br> more shells/(outermost) electron (1) <br> further from the nucleus <br> there is 'more shielding' or 'more <br> screening' (down group) <br> the nuclear attraction decreases | I onic radius <br> increases | 2 |
|  | OR <br> attraction between nucleus and <br> (outermost) electron decreases <br> OR <br> the increased shielding/increased <br> distance outweighs the increased <br> nuclear charge | (1) |  |
| IGNORE any references to 'more |  |  |  |
| protons' and/just 'increasing nuclear |  |  |  |
| charge' |  |  |  |
| IGNORE references to "effective |  |  |  |
| nuclear charge" |  |  |  |$\quad$|  |
| :--- |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| 2(c)(i) | Any ONE from: <br> (Electrons are being removed from <br> an) increasingly positive ion/ <br> charge on the ion (successively) <br> increases/ <br> increasing proton : electron ratio/ <br> same number of protons (attracting) <br> fewer electrons / <br> ions get smaller/ <br> the electron repulsion decreases/ <br> the shielding decreases/ <br> electrons (being removed are) closer <br> to the nucleus/ <br> effective nuclear charge increases | $\mathbf{1}$ |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| * 2(c)(ii) | First mark: Two jumps <br> Two (large) jumps (between $1^{\text {st }}$ and $2^{\text {nd }}$ and $9^{\text {th }}$ and $10^{\text {th }}$ IEs) <br> NOTE: A sketch graph with two (large) jumps can score this first mark <br> Note if the jumps are specified, they must be between $1^{\text {st }}$ and $2^{\text {nd }}$ and $9^{\text {th }}$ and $10^{\text {th }}$ IEs <br> Second mark: Electronic configuration of Na <br> 2, 8, 1 mentioned in words, annotated on a sketch graph or drawn out in a diagram (e.g. electrons shown in orbits/shells around the centre of the atom) but NOT just inferred $\begin{equation*} \text { ALLOW " } 1,8,2 \text { " OR } 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1} \tag{1} \end{equation*}$ <br> Mark the two points independently | $1^{\text {st }}$ mark if the graph is sketched ‘back to front' | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{2 ( d ) ( i )}$ | Credit any of the following <br> representations (but need BOTH Mg <br> AND Al to be correct) |  | $\mathbf{1}$ |
|  | $\mathrm{Mg} 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$ and AI <br> $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$ <br> $\mathrm{Mg} \mathrm{1ss}_{2} 2 s_{2} 2 p_{6} 3 s_{2}$ and AI <br> $1 s_{2} 2 s_{2} 2 p_{6} 3 s_{2} 3 p_{1}$ <br> $\mathrm{Mg} \mathrm{1S}^{2} 2 \mathrm{~S}^{2} 2 \mathrm{P}^{6} 3 \mathrm{~S}^{2}$ and AI <br> $1 \mathrm{~S}^{2} 2 \mathrm{~S}^{2} 2 \mathrm{P}^{6} 3 \mathrm{~S}^{2} 3 \mathrm{P}^{1}$ <br> $\mathrm{Mg} \mathrm{1S}_{2} 2 \mathrm{~S}_{2} 2 \mathrm{P}_{6} 3 \mathrm{~S}_{2}$ and AI <br> $1 \mathrm{~S}_{2} 2 \mathrm{~S}_{2} 2 \mathrm{P}_{6} 3 \mathrm{~S}_{2} 3 \mathrm{P}_{1}$ |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| * 2(d)(ii) | NOTE: <br> ALLOW an argument focusing on either the Al or the Mg atom <br> EITHER <br> In AI, (3p) electron (lost is) at higher energy/more shielded (by 3s electrons)/further from the nucleus <br> IGNORE any reference to an unpaired electron in AI <br> OR <br> In Mg, (3s) electron (lost is) at lower energy/less shielded/ nearer to the nucleus/from a full subshell/from a full orbital/from (stable) (3) $\mathrm{s}^{2}$ <br> Any reference to an Al atom being larger in size than an Mg atom scores zero overall. | Al has one more shell than Mg <br> J ust (lost from) a new sub-shell <br> Electron lost in Mg from a "full shell" | 1 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( a )}$ | First mark <br> The energy (allow enthalpy / heat) <br> required (allow change) per mole <br> (1) <br> Second mark <br> to form (gaseous) singly charged <br> positive ions <br> Or <br> to remove (1 mole of) electrons (1) | Energy / <br> enthalpy <br> produced | $\mathbf{3}$ |
| Third mark <br> from gaseous atoms (of the <br> element) (1) <br> X(g) $\longrightarrow$ X + g) $+\mathrm{e}^{(-)}$scores last 2 <br> marks <br> Ignore standard conditions <br> Per mole scores at any point | Just gaseous <br> element |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( b )}$ | Nuclear charge / effective nuclear <br> charge / number of protons / atomic <br> number increases ( 1) | charge density | $\mathbf{3}$ |
|  | Two of <br> (Outer) electrons in the same <br> (quantum) shell / same number of <br> electron shells (1) <br> Shielding (of nucleus)(about) the <br> same (1) <br> Distance from nucleus/atomic radius <br> less (1) | orbitals, sub- <br> shell |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 ~ ( c )}$ | Route 1 <br> Electrons (in the p sub-shell) are <br> paired (for the first time) (in S) / <br> two electrons occupy the same (p) <br> orbital / full orbital / electrons-in- <br> boxes diagram (1) <br> repulsion between the (paired) <br> electrons (reduces IE) (1) | $\mathbf{2}$ |  |
| Route 2 <br> P has a half-filled p sub-shell / half- <br> filled p orbitals which is stable (1) <br> (on ionization) S gains a half-filled p <br> sub-shell / half-filled p orbitals (1) |  |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 ( d )}$ | $200-490\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ | Negative values | $\mathbf{1}$ |


| Question | Correct Answer |  |  | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 (a) |  |  |  |  | 3 |
|  | element | str | bonding |  |  |
|  | sodium | Giant | metallic |  |  |
|  | silicon | Giant (atomic)/ macromolecular/ giant molecular | covalent |  |  |
|  | sulfur | simple / small molecules <br> OR <br> (simple) molecular <br> OR $\mathrm{S}_{8}$ molecules | covalent or van der Waals' forces/ London forces/ intermolecular forces/dispersion forces/induceddipole forces |  |  |
|  | IGNORE the word "lattice" OR "crystalline" <br> 6 boxes correct (3) <br> 5,4 boxes correct (2) <br> 3,2 boxes correct (1) <br> 1,0 boxes correct ( 0 ) |  |  |  |  |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 4 (b) | Si : covalent bonds / many bonds/ <br> strong bonds (between atoms) (1) | any reference to intermolecular <br> forces in Si | $\mathbf{2}$ |
| S: weak forces / van der Waals' <br> forces/ London forces/ dispersion <br> forces/ intermolecular <br> forces/ induced-dipole forces (1) <br> (need to be overcome) | suggestion that covalent bonds <br> are broken |  |  |


| Question Number | Correct Answer | Reject | Mark |
| :---: | :---: | :---: | :---: |
| $4 \text { (c) }$ QWC | Cations/ ions decrease in size (from $\mathrm{Na}^{+}$to $\mathrm{Al}^{3+}$ ) <br> OR <br> charge increases/ charge density on (cat)ions increases/ "effective nuclear charge" increases (from $\mathrm{Na}^{+}$ to $\mathrm{Al}^{3+}$ ) <br> more $\mathrm{e}^{-}$(per atom in 'sea' of delocalized electrons) / more delocalized electrons <br> OR <br> (force of) attraction between (cat)ions/ nucleus and (delocalised) electrons increases (from Na to Al) <br> IGNORE "nuclear charge increases"/ "increasing no. of protons" | atoms decrease in size <br> any mention of "molecules"/ <br> "covalent bonds"/ <br> "van der Waals' forces"/ <br> "ionic bonds" (0) overall | 2 |


| Question Number | Correct Answer | Reject | Mark |
| :---: | :---: | :---: | :---: |
| $4(d)(i)$ <br> QWC | - Add MgO to acid/ react MgO with acid/ dissolve MgO in acid <br> [NOTE: mention of heating not required. IGNORE water bath/ reflux] <br> - Filter <br> - Heat/boil filtrate / $\mathrm{MgSO}_{4}$ solution (until volume reduced by half) <br> - Leave to cool/ leave to crystallise/ evaporate slowly/ leave to evaporate <br> (decant / filter / pick out crystals, then) <br> Leave to dry/ pat dry/ dry between filter papers/ put in an oven/ put in a desiccator/ dry the crystals <br> IGNORE any washing of crystals immediately prior to drying them | J ust "warm" the filtrate/ $\mathrm{MgSO}_{4}$ solution <br> Use of a desiccant (added to crystals) | 5 |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 4 (d)(ii) | Rinse with (plenty of) water / use a <br> damp cloth or damp (paper) towel / <br> add a (named) weak alkali <br> (e.g. solid or aqueous sodium <br> hydrogencarbonate) | Any named strong alkali/just <br> "strong alkali" | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 4 (e)(i) | Insoluble strontium <br> sulfate/insoluble SrSO $_{4}$ <br> (forms on the strontium carbonate) |  | $\mathbf{1}$ |


| Question Number | Correct Answer | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 4 (e)(ii) | $\begin{aligned} & \mathrm{Sr}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{SrSO}_{4}(\mathrm{~s}) \\ & \text { species (1) } \\ & \text { state symbols (1) } \end{aligned}$ <br> 2nd mark is cq on first mark |  | 2 |

